Discovery of Genes for Stress Resistance in Mungbean (Vigna radiata)

Prakit Somta

Associate Professor, Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand

Dr. Prakit Somta is an Associate Professor in the Department of Agronomy, Faculty of Agriculture, at Kasetsart University's Kamphaeng Saen Campus, Thailand. He received his Ph.D. in Agronomy from Kasetsart University in 2005. From 2009 to 2013, he worked as a senior lecturer at the Kamphaeng Saen Campus. He was appointed assistant professor in 2013 and associate professor in 2018. Since earning his Ph.D., he has been working on genetic resources and breeding of legume crops, especially mungbean.

Abstracts

Mungbean is a socio-economically important legume crop in Asia. It is generally grown in rotation with cereal crops such as rice, maize, and wheat. However, the average seed yield of mungbean is low, being only about 900 kg per hectare, due to biotic and abiotic stresses including bruchid (*Callosobruchus analis*, Callosobruchus chinensis and Callosobruchus maculatus) infestation, powdery mildew (PM) disease caused by Erysiphe polygoni, Cercospora leaf spot (CLS) disease caused by Cercospora canescens, vellow mosaic disease (YMD) caused by Mungbean Yellow Mosaic Virus (MYMV) and Mungbean Yellow Mosaic Indian Virus (MYMIV), calcareous soil (iron deficiency chlorosis), and soil salinity. These stresses are believed to be exacerbated by climate change, threatening food security. Marker-assisted breeding (MAB) and genomics-assisted breeding (GAB) are promising approaches to efficiently and rapidly develop new crop cultivars with improved yield, quality, and resistance to biotic and abiotic stresses. Although mungbean was among the first legume crops subjected to genomics studies three decades ago, progress in genomics research for this crop has been very slow due to a lack of genomic resources. Additionally, there are only a few laboratories/institutes that consistently and continuously work on genomics and molecular breeding of mungbean. However, in recent years, quantitative trait loci (QTL) controlling bruchid resistance, PM resistance, CLS resistance, YMD resistance, calcareous soil tolerance, and salt tolerance have been identified by high-resolution mapping and/or genome-wide association studies. In addition, candidate genes controlling these stresses have been identified: VrPGIP1 and VrPGIP2 encoding polygalactorunase inhibitors for bruchid resistance, VrMLO12 encoding Mildew Locus O 12 protein and VrRPP13L encoding Peronospora parasitica 13-like protein for PM resistance, VrTAF5 encoding TATAbinding-protein-associated factor 5 and VrRLP12 encoding receptor-like protein 12 for CLS resistance, VrYSL3 encoding yellow stripe-like3 protein for calcareous soil tolerance, and VrCYBDOMG1 encoding a cytochrome b561 domain-containing protein. Tightly linked and/or functional markers have been developed for these genes for MAB of mungbean and are being used in the development of stress-resistant mungbean cultivars.

Inheritance of	of stress resist	ance i	n mui	ngbean 🍈
Stress	Resistant germplasm	No. of loci	H: (%)	References
Powdery mildew	V4718 and RUM5	2-3	>80	Reddy (1994) Chankaew et al. (2013)
Cercospora leaf spot	V4718 and V2817	1-2	>80	Chankaew et al. (2011)
Bruchids	V2709, V2802, V1128 and V2817	1 (<i>Br</i>)	>95	Somta et al. (2007) Chotechung et al. (2016)
Calcareous soil	NM10-12	1	>60	Srinives et al. (2010) Prathet et al. (2012)
Yellow mosaic virus	NM92 and BARI moong 1	1-2	>75	Malik et al. (1992) Alam et al. (2014)
Salinity	CPI 100834	1	45%	Deeroum et al. (2024)

•	~	hereneesens 8 (Selv I)		Single nucleotide	polymorphisms	(SNP) identified between Chai Nat 60 (CN60)
A comparative genome map	Linkage group 6			and itoms in ru	First genes lou	acing in and nearby the qr mitomost region
illustrating location of	1134001 cm - 1		10 Mar	Gene	No. of SNPs	Types of SNPs
qPMRUM5-2 (left) and	112.000.00			EVM0031008	164	nonsynonymous SNP (102), synonymous SNP (46),
candidate genes for the	NUMBER OF STREET			(VrRPP13L-2)	0151	and splicing-relevant SNP (3)
qPMRUM5-2 on	A REAL PROPERTY AND A REAL PROPERTY.	14.0-880-10.0.705 -073986800(1.1.4.86)		EVM0008427	220 and 5	nonsynonymous SNP (158) and synonymous SNP
chromosome 8 of the	NAME AND ADDRESS OF	- (2.304000-00-1,1-07,000) - (2.30440-00-0,1,200,000)		(VrRPP13L-3)	223 800 2	(71)
mungbean reference	NAMES OF CONTRACTOR	- Di Manandini (Linu/Pite		EVM0028537	51 and 8	nonsynonymous SNP (31), synonymous SNP (18)
genome (Sulv1) (right). The		The State State (1997) All State	tecognition of	(VrRPP13L-4)	UT della U	and stop-gain SNP (2)
candidate genes are bolded	******/	Peron	nospora parasitica	EVM0032804	77 and 1	nonsynonymous SNP (52), synonymous SNP (22),
and highlighted in blue and		-13-like	e protein (RPP13L)	(VrRPP13L-5)	CO DRIM (and stop-gain SNP (3)
green.		are ca	andidate genes at	EVM0016936	35 and 2	nonsynonymous SNP (21), synonymous SNP (11),
		-crawerics.com/mil	qPMRUM5-2	(VrRPP13L-6)	ou diriu z	and stop-gain SNP (3)
	10.000 A	-driftmentation (c) (c), here		EVM0018688	25 and 10	consumation SND (16) and sumanimous SND (9)
Waengwan et al.	(2024) Plants	Test Dr. adulates, (L. Kr., estil) Test Dr. Billion di Intel Trati		(VrRPP13L-7)	20 000 10	nonaynonymous orer (roy and synonymous arer (s)
https://doi.org/10	0.3390/plants13091230	- NLO-884 (2000)			Waengwa	n et al. (2024) Plants. https://doi.org/10.3396/plants/13091230

]
8955 94728	SLV.DFHLERFWGLQUFHGLICKYNELLQUHRQSTTIBELBEGRQF IW SLV.DFHLERFWGLQUFHGLICKYNELLQUHRQSTTIBELBEGRQF IW	TAF5 sequence
6753 94738	A00*551500EEAVTL5051004-W00HQHE1L408/ED5VEEH-DC46ALL5ETEV004 A00*551500EEAVTL5051004-W00HQHE1L408/ED5VEEH-DC46ALL5ETEV005 240	variations
8753 14738	EGREENHEESE CPS.IDVOXQUMSVKVVXXEFYSATGOMARPEATTISAAPKIKPEIPLP 100 EGREENHEETECHSIDVOXQUMSVKVXXEFYSATGOMARPEATTISAAPKIKPEIPLP 100	
x#51 9473.8	EVSTEVELSELED.RWVQL3VVA.PSWPYTEVWENGLSCSSSHORSLEVØPEDSS HV EVSTEVELSELED.RWVQLSSVA.PSWPYTEVWENGLSCSSISHOSLEVØPEDSS 140	
1951 14738	LIVMEHARLEDQSTARESQ66ADHSQ68QCT6Q456ANQVTLYQ6H56AVV4ATF5AA50 425 LIVMEHARLEDQSTARESQ66ADHSQ68QCT6Q456ANQVTLYQ6H56AV4ATF5AA50 425	Texture of a 1939 Three Yes Seent

	Number of						
Gene	SNPs and InDels	Types of mutations					
VrRLP2-1	131	nonsynonymous SNP (83), synonymous SNP (35), stop-gain SNP (2) and frameshift mutation (3)					
VrRLP2-2	145	nonsynonymous SNP (97), synonymous SNP (47) and non-frameshift mutation (1)					
VrRLP2-3	118	nonsynonymous SNP (83), synonymous SNP (33) and stop-gain SNP (2)					

Lines	PDS	AUDPC		DEAL	Deale	Malaka	1000000	0	Winld
		Bottom	Whole plants	(Deys)	(Days)	(cm)	(g)	pod	(k.g/rai)
KUWL2017A-12	7.00	101.53	61.92	41.67	69.00	38.57	7.46	11.75	253.56
KUML2017A-22	24.00	99,13	59.64	42.00	68.67	37.54	7.30	12,00	202,91
KUML2017A-40	22.00	104.67	62.90	41.67	60.00	39,13	7.78	12.17	235.28
KUML2017A-90	7.00	106 70	60.17	40,87	68.00	38.93	7.78	11.88	223,88
KUML2017A-104	10.02	81.65	55.61	42.33	69.00	38.21	7.92	11.75	226.30
KUML2017A-106	21.00	105.83	63.46	42.67	70.33	38.09	7.72	11.75	731.23
CN84-1 (RP)	81.68	131.69	79.77	43.00	69.33	36.48	7.58	11.93	181.62
V2709 (DP)	1.97	119,40	74,46	39.33	60.00	27.66	3.40	11.18	147.75
V4718 (DP)	13.68	17.20	12.29	39.67	68.00	31,33	3.26	12.21	241.27

Conclusions

- Most of biotic and abiotic stress resistance in mungbean is controlled by single major QTL
 VrPGIP1 and VrPGIP2, VrMLO12 and VrRPP13Ls, VrTAF5
- and *VrRLPs*, *VrYSL3*, and *VrOBE3L* are candidate genes for resistance to bruchid, powdery mildew, CLS, calcareous soil, and salinity, respectively, in mungbean

