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Abstract 

A method for estimating variance and covariance components for both uncensored 

and censored traits is described. The paper considers two cases: An uncensored trait 

and a right-censored trait; and two uncensored traits. A multivariate normal distribution 

is assumed for these traits and Bayesian arguments are employed to derive estimation 

procedures for dispersion parameters such as genetic variance and environmental 

variance. Observations are transformed by a Cholesky decomposition of the residual 

variance-covariance matrix so that residual covariance becomes zero. The residual 

variance for a right-censored trait and the residual covariance of a right-censored trait 

and an uncensored trait are estimated by two methods: maximum likelihood (ML) 

approach and an approximate expectation and maximization (EM) algorithm which is 

equivalent to restricted maximum likelihood (REML). A numerical example is used to 

illustrate the steps involved in applying the proposed methods. Comparison of the size 

of dispersion parameters in both between ML and an approximate EM procedures and 

between ignoring and accounting for censoring is tested in a numerical example. 
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Introduction 

The importance of herd-life as an adaptation 

trait in low-input, high stress environments has 
been pointed out by Togashi and Rege 

16
). The 

same study also stressed the need to include herd­

life in genetic evaluations and developed an 
iterative procedure for solving mixed linear model 

equations involving herd-life, a right-censored trait 

and for estimating location parameters such as 
fixed and random effects, assuming dispersion 

parameters are known in data sets consisting of a 

mixture of one continuous (uncensored) trait and 

another continuous trait treated either as 

uncensored or as censored. The term "censored" 

is explained in an appendix. The present paper 
presents an iterative procedure for estimating 

dispersion parameters. Expectation maximization 
(EM) algorithm (Dempster et al.

1
)), involving two 

steps, the expectation step (E-step) and the 

maximization step (M-step), has been applied to 

the estimation of genetic (co)variances of an 

uncensored or a discrete trait and residual 
variances of uncensored traits by Foulley et al. 

3
) 

and Simianer and Schaeffer
11

l. These procedures 

are equivalent to REML by Patterson and 
Thompson sJ. Maximum likelihood (ML) 

procedure has been applied to the estimation of the 

residual correlation between one uncensored and 
one binary trait by Simian er and Schaeffe/

1
l. 

W olynetz 
17

) presented maximum likelihood 

estimation procedure for variance component for a 

censored normally distributed trait. However, 

because the degrees of freedom needed to 

estimate fixed effects are not accounted for in ML 

procedures, ML estimates of residual variance are 
biased. Togashi et al.

15
) presented an approximate 

EM type algorithm for a combination of 

uncensored and binary traits. Taking the general 
approach of Togashi et al.

15
), the present study 

applies the EM algorithm to the estimation of 

genetic (co)variances and residual (co)variances in 

a data set with combinations of measurements on 
one uncensored and one right-censored trait. The 

study also develops an estimation procedure for 

residual variance of a right-censored trait and 

residual covariance of one uncensored and one 

right-censored trait applying a variation of the ML 
procedure of Wolynetz17). Major purpose of this 

paper is to illustrate the developed ML and an 

approximate EM procedures by using a numerical 

example. In addition, in a numerical example, this 

paper also tries a simple comparison of the size of 

dispersion parameters in both between ML and an 
approximate EM and between ignoring and 

accounting for censoring. 

Materials and Methods 

1. Models and data structure 
It is assumed that each animal has records on 

the two continuous traits whether they are 

censored or not. Two models are considered. 
Model 1 consists of an uncensored trait and a right­

c en so red trait. Model 2 consists of two 

uncensored traits. Let Yli be an uncensored datum 

for trait 1 measured on the i-th animal and Y2i be a 

datum for trait 2 which is right-censored at point I., 

under model 1 and uncensored under model 2. 

The distribution of Yli and Y2i is assumed to follow 

a multivariate normal. In model 1 data set, i.e. Yl 

uncensored and Y2 right-censored, observations in 

trait 1 form an sl x 1 vector Yl and observations in 

trait 2 which are right-censored form an sl x 1 

vector Y2'= (Li, L.i, ... ,L51), where sl is the number 

of observations in model 1. In model 2 data set, i.e. 

both Yl and Y2 uncensored, observations for trait 1 

and trait 2 form s2 x 1 vectors Y*l and Y*2, 

respectively, where s2 is the number of 

observations in model 2. 

The resulting linear bivariate model in matrix 

notation is: 

Model 1: 

I ~~ I = I ~ ~ 11 :~ I + I 

Model 2: 

Z 0 

0 Z 

I Y*l I = IX* 01· I bl I+ I Z* 011 ul I+ I e*l I 
Y*2 0 X* b2 0 Z* u2 e*2 
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where: bj = p x 1 vector of fixed effects for trait j, 

uj = q x 1 vector of additive genetic effects for trait j, 

ej = sl x 1 vector of residuals for trait j, 

e *j =s2 x 1 vector of residuals for trait j, 

X = sl x p incidence matrix corresponding to bj, 

X*=s2 x p incidence matrix corresponding to bj, 

Z = sl x q incidence matrix corresponding to uj, 

Z* = s2 x q incidence matrix corresponding to uj, 

p = the total number of levels of all fixed effects for 

model 1 and model 2, 

q = the number of additive genetic effects,~ sl + 

s2. 

The expectations and variance-covariance matrices 

of the random variables are: 

E I Yl 1-1 Xbl I EI Y*l 1-1 X*bl I 
Y2 - Xb2 ' Y*2 - X*b2 ' 

E I e:11 =IO I , VI ul I =GO#A, GO= I g11 g12 I 
e2 0 ~ ~h 

I 
el I I el* I I ru r12 I V =R#ls1, V * =R#ls2, R= 
e2 e2 r21 r22 

where: G0 = 2 x 2 additive genetic variance­

covariance matrix, 

A = q x q additive genetic relationship matrix, 

R = 2 x 2 residual variance-covariance matrix, 

#=direct (Kronecker-) product (Searle
10

l), 

gii = additive genetic variance of traitj, 

rii = residual variance of trait j, 

g12 = additive genetic covariance between traits 1 

and 2, 

r12 = residual covariance between traits 1 and 2. 

The unknown parameters are the location 

parameters, 

e ' = {b', u'}; b' = {bl', b2'}; u' = {ul', u2'} and the 

dispersion parameters, 

Y' = {g', r'}'; g' = {g11, g12, gzz}; r'={clel, o-e12, 

efe2}. 

It .is assumed that the same model applies to each 

trait. 

2. Method of inference 

Likelihood function given dispersion parameters 
R is decomposed as R = T T', where T is a 

lower triangular matrix which exists for any 

positive definite or positive semi-definite matrix. T 

is written as 

-I 
T is used to perform a Cholesky 

transformation (Stoer and Bulirsch
14

)) to remove 

the residual covariance between transformed 

variables. T-
1 

can be written as 

I 
t

11 

o I 
t21 t22 . 

Let the tilde symbol, (the underline ) , under a 

variable indicate that same variable on the 

transformed scale. Then: 

and similarly for elements of b,u,e and e*. On the 

transformed scale, variances and covariances are: 

R = T-1Rr_1
· =I. 

Given location and dispersion parameters, 

likelihood function of transformed variables can be 

represented as 

fcY I e, r) 
oc{exp [-0.5(Y:1-X*bl - Z*ul)'(Y:1-X*bl -

Z*!!l)] /115/

5 

· exp [-0.5(Y:2 - X*b2 - Z*l@'(Y:2 - X*b2 -

Z*1!2.)] /lls/
5 

· exp [-0.5(Yl - Xbl - Z!!l)'(Yl - Xbl - Zill.)]/ 
0.5 sl 

lls1I } P Q(m) ............. (1) 
,.J 

where Q (m) is the probability of y2i being larger 

than or equal to Li. 
The original y2i can thus, be represented as ; 
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y2i =(y:Zi - t21yli) /t
22 

=[ (x'ib2 + z'i!!.2)/t2
2
-yl/1 /t

22
]+e2/t22 

= Lµ; +eN, 

where Lµ;=(x'ib2+z'i!!.2) /t22
-y1l1 ;t22

, eN=e2/t
22

, x'i 

and z'i are rows ofX and Z pertaining to animal i. 

V(eN)=V[(t21eli + t22
e2)/t2

2
J=cle2 (l-r\1J=(t2

2r2. 
where r e12=residual correlation of trait 1 and trait 2. 

Then, 

Q (m) = Smiz (t) dt, 

where mi=(Li-Lµ)/CYeN and Z( ·) is a standard 

normal distribution function. 

Transformed additive genetic effect vector (U' 

(ul', u2')) is assumed to follow a priori a 

multivariate normal distribution, i.e., U-N (0, G) 

which is independent of the distribution of fixed 

X*'X*+X'X 0 X*'Z*+X'Z 0 

effects. Assuming flat priors for fixed effects, the 

prior distribution is taken to be uniform over the 

whole space. 

Therefore, log-posterior likelihood function for 

location parameters, given data and dispersion 

parameters, is expressed as: 

Log {f(e I Y, ;? }oc-0.5(Y*l-X*bl-Z*ul) '(Y*l­

X*bl-Z*ul) 

-0.5CY:,2-X*b2-Z*!!.2) 'CY:,2-X*b2-Z*!!.2) 

-0.5(Yl-Xbl-Z!!l) '(Yl-Xbl-Z!!l) 

+rJog(Q(mJ)-0.51~~ I 'G-
1 I~~ 1 · .......... (2) 

The model of this posterior equation can be 

estimated using the Newton-Raphson algorithm, 

which leads to the nonlinear system of equations 

for the t-th round of iteration. The equations are: 

(t-1) bl (t) 

0 X*'*+X'DX 0 X*'Z*+X'DZ b2 

Z*'Z*+Z'Z 
12 -1 

g A ul 
11 -1 

+g A 

symmetry Z*'Z*+Z'DZ u2 
22 -1 

+g A 

= RHS<t-1i. .. ............ (3) 

(t-1) • 
where the RHS correspondmg to the parameter 

sub-vectors are as follows: 

bl: X*Y*l+ XYl 

b2: X*Y*2+X'DXb2+X'D2u2+X'h 

ul: Z*Y*l+ZYl 

u2 :Z*Y2+Z'DXb2+Z'D2u2+Z'h. 

D is a q x q diagonal matrix with i-th diagonal 

denoted as di given by di = hi (hi - mi) and hi is the 

i-th element of a vector h of order sl, the i-th value 

of which is: hi= Z(m)/Q(mi). 

Genetic variance and covariance matrix for all 

denoted (G) is represented as : .G = .GQ#A, 

-1 -1 -1 -1 g g 

I 
11 121 

so .G = .G.Q #A , where .G.Q = g:21 g:22 

3. Estimation of residual variance of a right­

censored trait and residual covariance 

Maximum likelihood algorithm 
Likelihood function (La) for residual variance 

of the second trait on the transformed scale (0'
2
~ 

in equation 1 can be written as: 

La=[exp[-0.5(Y*2-X*b2-Z*u2)' 182 0'
2 e2(Y*2-

2 sl 
X*b2-Z*!!.2) l/11820' e21] ~ Q(mJ . ............. (4) 

l•l 

The normal equation evaluated at the 

maximum likelihood of 0'
2 
e2, given Y*2, b2, u2 and 

Lµ, where Lµ is an sl x 1 vector with Lµ; as i-th 

element can be written as: 

8 logLa/ oCY
2
~=(1/ CY

2
~ CY.:.2,-X*h,2-Z*!@' CY.:.2,-

X*b2-Z*!!.2)-s2 + Lj(h
2
i-dJ=0 .............. (5) 

We define wi as: 
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Then 

So 
From 

wi= LJ!i+CY eNhi. 
hi= (wi - Lµ)/ creN. 
h2i = t2 22 (wi - LJ!i) 

2 
/ cr

2 
e2, since ae2= t22 

aeN. 

(5), cr2e2 =[ ~-X*b2-Z*!!Z.) '~-X*b2-

Z*!!Z.)+L{t2\wi - LJ!i) }2]/ (s2 + Ld) 
=[ ~-X*b2-Z*!!Z.) '~-X*b2-Z*!!Z.)+ 

Ii{t22creNhJ2l(s2 + Ld). 

But, because t22 = 1/ (j eN, cr2 e2 can be written as: 

cr2 e2= [ ~-X*b2-Z*!!Z.) '~-X*b2-Z*!!Z.)+ Iih 
2J / 

(s2 +Iid). . .......... (6) 

Approximate EM type algorithm 
We divide the residual effect of the second 

trait (on the transformed scale) in model 1 into two 
parts, that is: 

Y2=Xb2+Zu2+e2**+~-e2**), 

where e2** is an sl x 1 vector with expectation of 

E~ I e2;?;m) and mis an sl x 1 vector with mi as 

i-th element and e2 is an sl x 1 vector of residuals 

in model 1 on transformed scale. Additionally, 

E~i I e2i;?;m)= hi. 
As hi is a function of location parameter 022, !!Z.), 
e2** can be transformed by a Taylor's series 
about[, 

A () e2** A 

e2** (0 =,: e2** (s)+~(s-0, 

wheres'= 022', u2'). 

Thus, 8e2** I 8('=8h/ 8('=(-DX, -DZ). 
Therefore, e2**(0 =,:e2**(0 + (-DX, -DZ) ((-Q. 

Ignoring ~ - e2**), the variance of cr2 e2 becomes 
cr2e2**. 

Thus: 

v ~ =[Dx, DzJv<,-0 I ~:~ J 

=[DX, DZ] I cb2b2 cb2u2 I I x:D I 
Cu2b2 Cu2u2 Z D 

=D(XCb2b2+ZCu2b:JX'D+D(XCb2u2+ZCu2u:JZ'D. 
Therefore, 

tr(V~) = trXCb2b2X'D
2 

+ 2 trXCb2u2Z'D
2 

+ tr ZCu2u2 
Z'D

2
• • •••••••• (7) 

The s2 x 1 residual effect vector (e*2) of the 

second trait in model 2 on transformed scale can 

be written as: 

, I b2-b2 I e*2= e*2-(X*:Z*) - -;- . 
u2-u2 

Therefore, 

V(e*2)=X *Cb2b2X*' +X*Cb2u2Z*'+Z*Cu2b2X*' 

+ Z*Cu2u2Z*'. 
Then, 

tr[V(e*2) ]= trCbzbzX*X* + 2 trCb2u2Z*X* 

+trCu2u2Z*'Z*. ··········· (8) 

By combining the residuals of transformed trait 2 

in model 1 and model 2 and applying EM algorithm 
(D 11, 2)) empster et a , , we get: 

cr2e2=[h'h+e*2' e*2+ tr(V~)+tr(V(e*2))]/(sl+s2). 

............ (9) 

Approximation 
Posterior mean of location parameters and Cii 

cannot be derived explicitly (e.g. Harville and 

M 
5> S . 11· l 13J) H . . ee , tirate 1 et a . . . owever approximat10n 

can be done using posterior mode and the inverse 

of coefficient matrix in the iterative step (Simianer 
and Schaeffe/

1
>). Accordingly, equation (6) 

derived by maximum likelihood and (9) derived by 

approximate EM type algorithm are re~resented as 

(10) and (11), respectively. This representation 

facilitates the iteration process. 
cr2e2<t+ll ={ (Y*2-X*b2<t>_z*u2<tl) '(Y*2-X*b2<t> _z* 

(t) (t) (t) (t) 
u2 )+L(hi xhi )}(s2+I,idi ) .......... (10) 

cr2e2<t+ll = [h ,<tlh <tl +e*2 ,<tle*2<tl +tr(V(e2)) <tl +tr(V 

(e*2)) <tl]/(sl+s2), ........... (11) 

where, in t-th trace element , Cii is replaced by the 

inverse of the coefficient matrix of t-th round of 

equation (3). For example, Chzuz <tJ is the inverse of 

t-th round of equation (3) corresponding to b2 and 

u2. 

Trace elements of equation (11) are shown in 

equation (7) and (8). These elements are obtained 

by adding the element for each individual. For 

example, the elements of tr(X Cb2b2X'D
2
) are 

obtained by adding the elements of the inverted 

left hand side of (3) corresponding to the level of 

fixed effect in each individual multiplied by d\ 
. 2 (t+l) 2 (t+l) 

The new estimates about er el and er e2 

need to be transformed back. This is done as 

follows: 
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I 
clel CJ~12 I (t+l)=T I <lel 

2 
0 

CJe12 CJ e2 0 CJ e2 

Numerical Example 

(t+l) 

T'. 

Herd-life and milk yield were taken as a right­

censored trait and a uncensored trait, respectively. 
The subset of data set by Reg/) was used in the 

present study. The numerical example applied a 

simple sire model with only one fixed effect. The 

data structure is given in Table 1. The linear 

model used to describe both traits was: 

Yiik=bi+si+eiiki 
where 

bi= fixed effect of herd-calving year (i=l, ... ,12), 

si= random effect of j-th sire G=l,2, ... , 20). 

All the relationships among sires were 

ignored, i. e. A=l to illustrate the procedure simply 

and to reflect the realistic situation of difficulty in 

implementing cow registration in Africa. Residual 

covariance and residual variance for herd-life were 

estimated by both ML and an approximate EM 

type algorithm as described in the previous 

section. Additionally, dispersion parameters were 

continuous uncensored traits. 

1. Iterative estimation procedure in numerical example 
The data were normal-standardized. Mean and 

standard deviations for milk yield were taken as 

3637 and 644.5 while the corresponding values for 

herd-life were 2856.2 and 761.6, respectively, these 

values having been obtained from the entire data 

set of Rege
9
l. Initial dispersion parameters <lel, 

2 2 2 
CJe12, CJ e2, CJ sl, CJ s12 and CJ s2 were 0.9375, 

0.09506, 0.9750, 0.0625, 0.009882, and 0.025, 

respectively, corresponding to heritability for milk 

yield, heritability for herd-life, genetic correlations 

and residual correlations of 0.25, 0.1, 0.25 and 0.1, 

respectively. The term cr2sl represents sire 

variance and so do CJ
2
s2 and CJsl2. Starting values 

(priors) for fixed and random effects were zero. 

Step 1. Cholesky transformation on variances 

1
.9375 .09561 I I .96825 o I R- ~TI" T-

- .09561 .9750 - ' - 0.09874 .98247 

-1 I 1.03279 o I 
T = -.10380 1.01784 . 

estimated treating right-censored points as On the transformed scale, sire variance and 

uncensored data which results in a data set of two covariances were: 

GO=T-lGOT-1·= 11.03279 0 11 .0625 .009882111.03279 -.10380 I 
-.10380 1.01784 .009882 .025 0 1.01784 

.06667 .00369 I 

.00369 .02449 . 

Table 1. Data structure of numerical example 

Total(N) 
No.of sires 
No.of uncensored data 
No. of censored data 
mean 
CJ'X 

range 
Phenotypic correlation 

First lactation milk yield 

139 
20 

139 
0 

3492.5kg 
963.5 

1451-5824 
-0.1855 

Herd-life 

139 
20 

125 
14 

2858.2 days 
423.4 

2228-4230 
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G0-1= I g
11 

g
1

: I = 115.12618 -2.278331 
- g21 g2- -2.27833 41.18393 . 

Step 2. Cholesky decomposition on a variate of 

model 1, i.e. milk yield is uncensored but 

herd-life is right-censored 

In the first datum of model 1, the normal 

standardized milk yield and normal standardized 

right-censored points are -2.32118 and -0.01471, 

respectively. Thus: 

L ( ' b2 ' "2\/ 22 21/ 22 µl = X 1-+ Z 1llie.l t -Yl1 · t t 
=(x'10+z'10)/l.01784-(-2.32118) · (-0.10380)/ 

1.01784 

=-0.23672 

(YeN = (Ye2(1-r\1/
5
=0.98247 

m1 = (Li - Lµ1)/ (Y eN = (-0.01471 + 0.23672)/.98247 

=.22597 

Q(m1)=fru1z(t)dt=0.41061 

Z(m1) = 0. 38889 

h1 = Z(m1)/Q(m1) = 0.9471 and 

d1 = h1 (hcm1) = 0.68298 . 

Values of the other variable for model 1, that is, hi 

and di are calculated in the same way. The variates 

of milk yield in model 1 are transformed as: 

lli = t
11 

• yl1 = 1.03279 X (-2.32118) = -2.39729. 

The remaining Yli values (for milk yield in model 

1) are obtained in the same way. 

Step 3. Cholesky decomposition on a variate of 

model 2, i.e. both milk yield and herd-life 

are uncensored 

In the first datum of model 2, normal 

standardized milk yield and normal standardized 

herd-life are -1.82777 and 0.50657, respectively. 

Thus: 

I 
D1 I =T-1 1-1.827771 
~1 0.50657 

1
1.03279 0 11-1.827771 
-.10380 1.01784 0.50657 

1

-1.88770 I 
0.70533 . 

The rest of model 2 values, y:.L and Y..::Z.i are 

calculated in the same way. 

Step 4. Initial step of constructing and solving the 

mixed model equations of (3) 

Using the elements of h and D obtained in 

step 2 and transformed variates of d and .Y.:2, 
obtained in step 3, mixed model equation (3) are 

constructed and solved. Inbreeding and all the 

relationship among sires are ignored so that, A = I. 

Step 5. Iterative step of constructing and solving 

the mixed model equations 

The elements of h and D are replaced by new 

estimates for location parameters and the elements 

of RHS for b2 and u2 are obtained from the 
. . f b2<t-1> d 2<i-o Th. prev10us estimates o _ an !L . 1s 

procedure for solving bl, b2, ul and u2 is iterated 

and the stopping criterion on original scale (not 

standardized scale) is met. The criterion used was: 

where ei is the location parameter of bl, b2, ul and 

u2. 

Step 6. Estimation of sire variances and covariance 

The final solutions for sire effects in step 5 

were as follows: 

ul' = (0.04145, 0.01949, 0.02673, ....... , 0.15775) and 

u2' = (-0.00193, 0.08066, 0.01909, ...... , 0.06814). 

And, Cii• the inverted left hand side of (3) 

corresponding to b.i and hi was given and the trace 

cij was as follows: 

tr (C11) = 0.04229 + 0.04441 + 0.04107 + ... + 0.05329 

= 1.02539 

tr (C12) = 0.00195 + 0.00209 + 0.00187 + ... + 0.00271 

=0.05167 

tr (C20 = 0.01999 + 0.02049 + 0.01968+ .... +0.02225 

= 0.43935. 

And 

ul'ul = 0.31233 

ul'u2 = 0.00661 

u2'!!2 = 0.02074. 

Then: 
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clsl = (yJ' ul + tr C11)/20 = 0.06689 

as12 = (yJ' u2 + trC1z) /20 = 0.00291 

cl s2 = C!!.2.' u2 + tr C22) /20 = 0.02301. 

The new estimates need to be transformed back: 

G0(2) =T I 0.06689 0.00291 I T' 
0.00291 0.02301 

I 
0.06271 0.009171 

= 0.00917 0.02343 . 

h' = (0.63151, 0.78862, 0.87758, ...... , 0.74961). 

The diagonal elements of D, that is d' = (d1, d2, ... , 

ds1) from step 5 were: 

d' = (0.57242, 0.63344, 0.66252, .... , 0.61954). 

Transformed variates of trait 2 CY:]) in model 2 

were: 

Y*2' = (0.70532, 0.27701, 0.36348, ..... , -0.32494). 

Fixed effects given in step 5 for transformed trait 2 

were: 

b2' = (-0.02356, -0.38969, 0.25933, ..... , 0.45146). 

Therefore: 

Step 7. Estimation of residual variance of cle2 = { (Y*2-X*b2-Z*u2) '(Y*2-X*b2-Z*u2) + 

transformed milk yield h'h} / (125+ I.id;) 

Transformed varieties of milk yield in model 1 

(Yl) were: 

Yl '= (-2.39729, -3.22577, -0.83008, ... , -1.32204). 

Transformed varieties of milk yield in model 2 

(YI:) were: 

Yl *'= (-1.88771, -2.37325, -2.56875, ... , 0.55766). 

Transformed fixed effects for milk yield (hl) given 

in step 5 were: 

bl'=(-2.29821, -1.46951, 2.21465, ... , -0.45381). 

Transformed sire effects on milk yield (ul) 

obtained in step 5 were: 

ul' = (0.04145, 0.01949, 0.02673, ... , 0.15775). 

The elements of RHS corresponding to bl, i.e. 

(X*Y*l+X'Yl) given in step 5 were: 

(X*Y*l+X'Yl)'= (-2.37358, -l.51770,-2.28728, ... , 

-0.46870). 

The elements of RHS corresponding to ul, i.e. 

(Z*Y*l + Z'Yl) given in step 5 were: 

(Z*'Y*l +Z'Yl)'= (0.04281, 0.02012, 0.02760, ... , 

0.16293). 

Thus: 

clel=[ CY::1:Yl) 'CY::1:Yl)-bl' (X*'Y*l+X'Yl)-ul' 

(Z*Y*l+Z'Yl)]/(900+100-12) = 1.09952. 

Step 8.1 Estimation of residual variance of 

transformed trait 2 by maximum 

likelihood 

The elements of h obtained after convergence 

of location parameters in step 5 were: 

= 0.31538, where 125 is the value for sl, i.e. 

number of records in model 1. 

Step 8.2 Estimation of residual variance of 

transformed traits 2 by an approximate 

EM type algorithm 

The varieties of residual effects of transformed 

trait 2 in model 2 (e2*) were: 

(e2*)' = (0.73081, 0.30250, 0.38897, ... , -0.82612). 

And 

tr Cb2b2X*'X*= 11.54769 

tr Cu2u2Z*'Z* = 2.65767 

tr XCb2u2Z'D
2 

= -0.02073 

tr Cb2u2Z*'X* = -0.77990 

tr XCb2bzX'D
2 

= 0.38981 

tr ZCu2u2Z'D
2 

= 0.10904. 

Therefore: 
2 a e2 = [h'h +e*2'e*2 + tr Cb2b2X*'X* + 2tr 

Cb2u2Z*'X* + trCu2u2Z*'Z* + tr xcb2b2X'D
2 

+ 

trXCb2u2Z'D
2 

+ trZCu2u2Z'D
2
]/ (14 + 125) 

= 0.39056, where 14 is the value for s2, i.e. number 

of data in model 2. 

Step 9.1 Back-transformation and Cholesky 

transformation based on new residual 

(co)variances obtained by maximum 

likelihood 

R(2) =TRT' = I .96825 0 111.09952 0 I 
- .09874 .98247 0 0.31538 

.96825 .09874 

0 .98247 
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1.03081 .10512 

.10512 .31514 

RczJ =TI"= 1.01529 0 111.01529 0.103541 
.10354 .55174 0 0.55174 

Same steps (1 to 9.1) are repeated when 

maximum likelihood procedure is applied to 

residual variance for transformed trait 2. 

.96825 0 

Step 9.2 Back transformation and Cholesky 

transformation based on new residual 

(co)variances obtained by an 

approximate EM type algorithm 

.09874 .98247 
111.0~952 o I I .96825 .09874 I 

.39656 0 .98247 

1.03081 .10512 

.10512 .39350 

R<zJ =TT'= 1.01529 o I I l.01529 :10354 I 
.10354 .61869 0 '.61869 

Same steps (1 to 9.2) are repeated when an 

approximate EM type algorithm is applied to 

residual variance for transformed trait 2. 

Step 10. Criterion for terminating iteration of 

dispersion parameters 

Iteration stops when the following criterion on 

original scale (not standardized scale) is met: 

where the term y i represents dispersion parameter 

of residual variance or sire variance. 

2. Result of Numerical Example 

Values of parameters during selected rounds 

of iteration are summarized in Tables 2 and 3 for 

maximum likelihood and EM procedures, 

respectively. Convergence occurred at the 37th 

round in both cases. The residual variance for 

herd-life by maximum likelihood was smaller than 

that by an approximate EM type algorithm. 

Table 2. Summary of ML parameter estimates at selected rounds of iteration 

Round of iteration 

Parameters 10 20 

a 2 
sl 25961.4 22780.5 22017.0 

a sl2 4850.7 -1090.2 -6357.1 
a 2 s2 14500.9 16117.9 20114.4 
a 2 el 389418.9 460156.4 460634.2 
a el2 46928.6 55453.1 55510.7 
a 2 e2 565533.7 141909.9 139018.5 

a 2 s 1 :sire variance for milk yield 
a s12 :sire covariance between milk yield and herd-life 
a 2 s2 :sire variance for herd-life 
a 2 el :residual variance for milk yield 
a el2 :residual covariance between milk yield and herd-life 
a 2 e2 :residual variance for herd-life 

30 37 

21340.0 20694.7 
-8953.5 -9818.3 
21541.5 21701.6 

461213.0 461681.7 
55580.5 55637.0 

138152.1 138035.5 
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Estimates of heritability for milk yield and for herd­
life and of genetic and residual correlation by 

maximum likelihood were 0.1716, 0.5434, -0.4633 

and 0.2204, respectively. Corresponding estimates 
by an approximate EM type algorithm were 0.1718, 

0.4239, -.4516 and 0.2099, respectively. Values of 

parameters during selected rounds of iteration 
treating right-censored points as continuous 

measurements are summarized in Tables 4 and 5 

for ML and EM procedures, respectively. 
th th 

Convergence occurred at 34 and 38 rounds for 
ML and EM procedures, respectively. Estimates of 

heritability for milk yield and for herd-life and of 
genetic and residual correlations by ML treating 

right-censored points as continuous measurements 

were 0.1545, 0.3994, -0.3653 and 0.2273. 

Corresponding estimates by EM were 0.1580, 

0.2577, -0.3108 and 0.2120. This seems to be that 

ignoring censoring results in lower heritability and 

genetic correlation. 

Discussion 

Maximum likelihood estimate for residual 

variance of transformed trait 2 (cl~ was obtained 
by maximizing f(cle2, ml Y*2, b2, u2, Lµ) with 

respect to a2e2. That is, prior values of location 

parameters were required. Posterior expectation 

taken with respect to the conditional distribution 

f(e I Y, y) plays a basic role in the expectation step 
in an approximate EM type algorithm. As 

Dempster et al.
2
l illustrated, the maximum 

likelihood estimates for residual variances which 
are obtained by using posterior expectations 

Table 3. Summary of approximate EM parameter estimates at selected rounds of iteration 

Round of iteration 

Parameters 10 20 

a 2 
sl 25961.4 22653.2 21657.5 

a sl2 4850.7 -457.7 -4998.5 
a 2 s2 14500.9 13967.1 16349.4 
a 2 el 389418.9 460258.0 460793.9 
a el2 46928.6 55465.4 55530.0 
a 2 e2 535533.7 155331.8 153384.0 

a 2 s 1 :sire variance for milk yield 
a sl2 :sire covariance between milk yield and herd-life 
a 2 s2 :sire variance for herd-life 
a 2 el :residual variance for milk yield 
a el2 :residual covariance between milk yield and herd-life 
a 2 e2 :residual variance for herd-life 

30 37 

21182.2 20718.0 
-7688.4 -8731.4 
17704.8 18043.1 

461208.9 461569.3 
55580.0 55623.3 

152454.8 152205.4 

Table 4. Summary of ML parameter estimates at selected rounds of iteration treating right-censored points 
as continuous measurements 

Round of iteration 

Parameters IO 20 

a 25961.4 22551.5 20751.1 
a sl2 4850.7 -183.5 -3525.8 
a 2 s2 14500.9 13691.5 14386.2 
a 2 el 389418.9 460345.2 461375.5 
a el2 46928.6 55475.9 55600.1 
a 2 e2 565533.7 131103.9 130285.3 

a 2 sl :sire variance for milk yield 
a s12 :sire covariance between milk yield and herd-life 
a 2 s2 :sire variance for herd-life 
a 2 el :residual variance for milk yield 
a e12 :residual covariance between milk yield and herd-life 
a 2 e2 :residual variance for herd-life 

30 37 

19487.4 18596.6 
-5226.3 -5984.1 
14518.6 14429.0 

462206.6 462798.7 
55700.2 55771.6 

130062.4 130062.8 
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Table 5. Summary of approximate EM parameter estimates at selected rounds of iteration treating right­
censored points as continuous measurements 

Round of iteration 

Parameters IO 20 30 37 
a a -sl 25961.4 22465.9 20536.7 19389.1 19011.8 

a sl2 4850.7 394.5 -2357.9 -3915.3 --4346.8 
a 2 s2 14500.9 11269.8 10680.5 10385.2 10289.5 
a 2 el 389418.9 460418.1 461467.1 462174.0 462416.5 
a e12 46928.6 55484.7 55611.1 55696.3 55725.5 
a 2 e2 565533.7 149435.9 149405.5 149398.4 149409.7 

a 2 s 1 :sire variance for milk yield 
a sl2 :sire covariance between milk yield and herd-life 
a 2 s2 :sire variance for herd-life 
a 2 el :residual variance for milk yield 
a el2 :residual covariance between milk yield and herd-life 
a 2 e2 :residual variance for herd-life 

coincide with the estimates by restricted maximum 

likelihood under normality. It is not possible to 

evaluate the posterior expectations for location 

parameters in posterior likelihood function 

(equation 2) to obtain the residual effects of el and 

e2, since integration of nuisance parameters is 

complex. As suggested by Foulley et al.
4

\ to obtain 

residual variances the mode of the posterior 
function for location parameters is replaced by 

restricted maximum likelihood estimates. Under 
non-linearity, the inverse of equation (3) yields 

only an approximation to the (co)variance matrix of 

estimators for location parameters. This 

approximation may be a reasonable one when 

sample size is large. For the right-censored trait 

(herd-life), only the expectation of residual effect 

greater than standardized right-censored point (mi) 

is considered. The part of the difference of 

residual effect and this expectation, i. e. ~ - e2**), 

is ignored. This assumption may seem unrealistic, 

but it is adequate. Because e2** is a conditional 

expectation given data of a continuous trait and 

right-censored point, most of the residual variance 

can be considered to be explained by V(e2**). In 

this procedure to estimate V(e2**), expectation is 

taken with respect to f (location parameters I 

dispersion parameters, Y). Thus, there is no need 

to make any assumption on location parameters in 

an approximate EM type algorithm. In this regard, 

an approximate EM type algorithm is an 

improvement over ML. The procedure presented 

should be of practical use in analyzing animal 

breeding field data. The main disadvantage of 

approximate EM type algorithm is the need to have 

the inverse elements of the mixed model equations 

at every iteration. This is not a problem in a sire 

model even for large data sets but could present a 

drawback in an animal model, especially if the data 

set is large. Thus, there is need to develop 

computing strategies to overcome this problem if 

the procedure is to gain wider application in animal 

model. 
The procedure of Togashi and Rege 

16
> for 

estimating location parameters does not need the 

formation of the coefficient matrix in-core but 

assumes that dispersion parameters are known. 
The procedure presented in the present paper is 

specifically designed for estimation of dispersion 

parameters but location parameters are also 

estimated in the process. However, because the 

present procedure requires formation and 

inversion of the coefficient matrix at each iteration, 

it is not a procedure of choice for location 

parameters, especially for large data sets. It may, 

however, be done from subsets of large data sets 

by applying the present procedure. Additionally, 

and as has been pointed out, the present procedure 

can be applied in relatively large data sets with the 
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sire model or maternal grandsire model. 
Conditional expectation of residual, given data 

and current (co)variance components in the 

iterative step, was used instead of real residual. 

The residual (co)variance matrix was derived 
based on the residual: e = e - (X:Z) ((b - b), (u -

u))' where X and Z are the design matrices for 
fixed effect (b) and random effect (u), respectively. 

In an approximate EM type algorithm, residual 

(co)variance matrix is derived based on the 

conditional expectation of residual. That is, 
' ' 

e2** (5) =c e2** ( 8) + [-DX, -DZ] (8 -8). In the 

process of equating e2** 'e2** to its posterior 

expectation given data and current (co)variance 
components in the iterative step, residual 

(co)variance matrix based on conditional 
expectation, i.e. V(e2**) would be more 

reasonable. 
In general, convergence is not guaranteed 

with REML or ML algorithm. Even if the 

procedure does converge, the final estimate may 

not be the one that maximize the likelihood 

function over the entire range of parameter values. 

That is, there is no guarantee that a global 

maximum will be reached. However, convergence 

normally occurs if the number of observations is 

large and this would likely be the maximum of the 

likelihood function. 

In the present study, a Cholesky 
transformation was applied so that residual 

covariance becomes zero. The approach outlined 

in this paper assumes that every individual animal 

has a complete set of record on both traits of 

interest. In general, the Cholesky transformation 

can be applied to any data set in which traits 1 to G-
1) are present and traits j to t are missing, where t 

is the total number of traits. 

This study assumed zero non-additive genetic 

variance. However, specific gene combinations 

and the way in which they are assembled might 

have an important effect on such traits as herd-life. 

Hence, there would be some room for this 

procedure to be improved by including non­

additive genetic variance, possibly by applying 

such approaches as those by Henderson 
6
>, Smith 

and Maki-Tanila 
12

> and Hoeschele 
7
>. 

Residual variance for right-censored trait was 

smaller in ML than in an approximate EM type 

algorithm in the numerical example. This was 

probably due to the difference in the degrees of 

freedom associated with fixed effects. Heritability 
for herd-life and genetic correlation treating right­

censored points as continuous measurements were 

lower than those of treating them as right-censored 

measurements. This could be due to ignoring 

potential genetic ability to be able to stay more 
days in the herd. Thus, treating right-censored 

points in herd-life as continuous traits could lead to 

bias for estimation of dispersion parameters. 

However it could also be influenced by the size of 

heritability and right-censored position of the data 

set. For instance, the possible range of residual 
(e2) is determined by the position of right­

censored point. Thus, when the possible range of 
e2 in standard normal distribution is small, V ~ -

e2**) would become small as well. In this case 

V(e2**) may be a preferred estimator. Further 

research is needed to understand how both ML 

and approximate EM type algorithm are influenced 

by degrees of freedom of fixed effects, the size of 

heritability and position of right-censored point. In 

a numerical example, only one set of starting 

values was conducted to illustrate the procedure, 

another set of values may, however, be necessary 

for detailed analysis. In addition, simulation to 

grasp how the size of dispersion parameters is 

affected by the above issues may be necessary . 
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Appendix 

Let Yi be an observation and l,~yi~Ui where 
I., and Ui are known. Several different situations 

can be distinguished. First, when I., = Ui, the ith 
observation is exactly specified, i.e. uncensored. 

Second, when I., = w, the ith observation is said 

to be censored on the left at Ui. Third, when Ui = 

co, the ith observation is said to be censored on the 

right at 1,. 
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